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Observation of the ponderomotive effect in
non-valence bound states of polyatomic
molecular anions
Do Hyung Kang 1, Jinwoo Kim 1, Heung-Ryoul Noh 2 & Sang Kyu Kim 1✉

The ponderomotive force on molecular systems has rarely been observed hitherto, despite

potentially being extremely useful for the manipulation of the molecular properties. Here, the

ponderomotive effect in the non-valence bound states has been experimentally demon-

strated, for the first time to the best of our knowledge, giving great promise for the

manipulation of polyatomic molecules by the dynamic Stark effect. Entire quantum levels of

the dipole-bound state (DBS) and quadrupole-bound state (QBS) of the phenoxide (or 4-

bromophenoxide) and 4-cyanophenoxide anions, respectively, show clear-cut ponderomotive

blue-shifts in the presence of the spatiotemporally overlapped non-resonant picosecond

control laser pulse. The quasi-free electron in the QBS is found to be more vulnerable to the

external oscillating electromagnetic field compared to that in the DBS, suggesting that the

non-valence orbital of the former is more diffusive and thus more polarizable compared to

that of the latter.
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The ponderomotive force is the physical phenomenon
experienced by the charged particle in the presence of the
oscillating electromagnetic fields1–3, which is extremely

useful in the spatiotemporal manipulation of atoms/molecules/
ions. The utilization of the ponderomotive force becomes more
and more important not only in resolving scientific issues but also
in the materialization of the cutting-edge modern quantum
technology. As a trigger of the wiggling motion, the ponder-
omotive force has been vastly employed for the acceleration of
electron4,5 or neutral atoms6, aligning the atoms in an optical
lattice7,8, the high-harmonic generation9, or the construction of
the trapped-ion quantum simulators10,11. The ponderomotive
force shares the same origin with the dynamic Stark effect12–14.
The scientific merit of the dynamic Stark effect, though it is still
quite rare, was demonstrated in terms of its active role in che-
mical reaction control as well as in the spectroscopic character-
ization of the ionization/detachment processes15–20. And yet, it
has mostly been confined to atoms or diatomic molecules only.
The dynamic Stark effect on the polyatomic molecular system
seems to be still in infancy in terms of both the scientific
understanding and its chemicophysical applications. From the
molecular perspective, this is partially due to the fact that Rydberg
states, which are expected to be largely influenced by the pon-
deromotive force21–25, are extremely short-lived in the polya-
tomic molecules due to the strong and complicated interaction
with the ionic core.

In this regard, the quasi-free electron residing in the non-
valence orbital associated with the polyatomic molecular anions is
extremely attractive. As the non-valence excess electron in the
non-valence bound state (NBS) of the anion is quite loosely
bound through the long-range monopole-multipole26–29 or cor-
relation interaction30,31, it is highly anticipated to behave like a
free electron in the oscillating electromagnetic field. Since there
is only one state for the excess electron in the NBS most cases,
the quantum defects caused by the electron-core interaction
are expected to be non or insignificant. In this sense, the non-
valence orbital in the various NBSs such as dipole-bound state
(DBS)32–34, quadrupole-bound state (QBS)35–38, or correlation-
bound state (CBS)39–42 seems to be an ideal target for the
investigation of the pondermotive effect on the polyatomic
molecular anions. It should be emphasized that the intrinsic
nature of the monopole-dipole (or quadrupole) or correlation
interaction is anticipated to be little influenced by the molecular
complexity43, meaning that the ponderomotive force could be
effective even for the quite large polyatomic systems as long as the
non-valence orbital survives during the oscillating electro-
magnetic field. It has been recently found that the DBS prepared
below the detachment threshold, unlike the Rydberg states of
polyatomic molecules, could survive quite long with the lifetime
much longer than tens of nanoseconds or microseconds44,
although it should be noted yet that the NBS lifetime is subject to
the detailed electronic structures in terms of the coupling between
non-valence and valence orbitals45–47. The NBS levels above the
detachment threshold mainly decay by the rovibrational auto-
detachment process. According to our recent real-time dynamics
studies on DBS and QBS48,49, the Fermi-Golden rule provides the
nice platform for the description of both absolute and relative
autodetachment rates.

Herein, we tackled three different molecular anions (phenoxide
(PhO−), 4-bromophenoxide (4-BP−), or 4-cyanophenoxide (4-
CP−)) to investigate the ponderomotive force on the excess quasi-
free electron in the non-valence orbital of NBS. Quite remarkably,
we found that all the non-valence bound states show the clear-cut
ponderomotive effect induced by the non-resonant picosecond
(ps) laser pulse at 791 nm. The overall behavior of the ponder-
omotive blue-shift (Δṽ) with the increase of the laser intensity (I)

follows the free-electron model (vide infra). This already gives the
important message that the large polyatomic molecular anions
could be manipulated through the pondermotive force on the
quasi-free electron in the non-valence orbitals. Intriguingly,
whereas both DBS and QBS follow the free-electron model in
terms of the linearity of Δṽ versus I, the QBS behaves more like a
free-electron than the DBS does. The model potential functions
are found to be quite useful for the visualization of the diffuseness
and associated polarizability of the excess electron in the non-
valence orbital.

Results and discussion
Photodetachment spectra with and without the control laser
pulse. The photodetachment spectrum of the cryogenically-
cooled (~35 K) PhO− taken by monitoring the total photoelec-
tron signal as a function of the excitation energy of the ps pump
laser pulse (Δt ~ 1.7 ps, ΔE ~ 20 cm−1) is compared with that
taken in the presence of the spatiotemporally overlapped non-
resonant ps control laser pulse at 791 nm (Fig. 1b). Overall, the
sharp bands correspond to the DBS resonances whereas the broad
background is due to the direct photodetachment process. The
DBS at zero-point energy (ZPE) level is located below the electron
affinity (EA) threshold whereas additional sharp vibrational
Feshbach resonances are above the EA threshold50. The DBS at
ZPE was found to survive quite long (» ns)44, whereas the 11′1

mode decays by the autodetachment process with the lifetime of
~33 ps48. At the zero-delay time, the non-resonant (791 nm) ps
control laser pulse is spatiotemporally overlapped with the
scanning pump laser pulse, and all the DBS bands are found
to be blue-shifted, indicating that the entire DBS electronic state
is lifted up by the amount of the ponderomotive potential given
by the control laser pulse intensity. Each DBS band is also
broadened toward the blue-edge of the peak. The stepwise
increase of the direct photoelectron signal at the EA threshold
exhibits the blue-shift, although the quantitative estimation seems
to be nontrivial due to the lack of the sharpness of the step-like
structure. Similar to the case of PhO−, the photodetachment
spectra of the 4-CP− QBS also show the same pattern of the blue-
shifts for all the QBS bands in the presence of the non-resonant
control laser pulse (Fig. 1c). As the electron binding energy of the
4-CP− QBS is only ~ 20 cm−136, which is much smaller than that
of the PhO− DBS (~97 cm−1)50,51, the spectral isolation of
the ZPE level of the QBS is less straightforward. However, blue-
shifts and peak broadenings are quite clearly observed also in the
4-CP− QBS.

In order to characterize the spatiotemporal circumstances of
the ponderomotive force given to the system, we examined the
behavior of the most prominent 11′1 DBS band of PhO− as the
delay time between pump and control laser pulses is varied.
When the blue edge of the 11′1 DBS band was monitored as a
function of the pump-control delay time (Figs. 1 and 2), the
Gaussian-shaped transient with the full-width at half-maximum
(FWHM) of ~3.3 ps was obtained. This is in excellent agreement
with the nominal cross-correlation width (~2.8 ps) of pump and
control laser pulses. In Fig. 2, the 11′1 DBS band were obtained at
various pump-control delay times by monitoring only the low
kinetic-energy electron to avoid the contribution of the control
laser pulse. Obviously, both the blue-shift and asymmetric
spectral broadening take place, only when the 791 nm control
pulse (I ~ 85 GW/cm2) is spatiotemporally overlapped with the
pump laser pulse. Asymmetric broadening to the blue-edge of the
DBS or QBS band with the increase of the control laser intensity
is attributed to the Gaussian shapes of the control laser pulse in
both temporal and spatial domains. In the weakly overlapped
region, the ponderomotive shift becomes small. But as the shift is
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always towards the blue-edge, regardless of the spatiotemporal
directions, the consequent DBS or QBS band (Supplementary
Fig. 1) ends up with the asymmetric broadening which stands out
at the blue-edge of the band. One may conceive the combined use
of the narrower-bandwidth pump laser pulse and higher-power
control laser pulse for the better energy-resolution and larger shift
of the ponderomotive effect, respectively, which is subject to the
further investigation.

The ponderomotive shift as a function of the control laser
intensity. In general, the ponderomotive (or dynamic Stark)

potential energy is given as follows.

V � � 1
4
αE2ðtÞ ð1Þ

here, α is the polarizability of the charged particle whereas E(t) is
the external oscillating electric field. For the free electron, α is
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Fig. 2 Temporal (overlap between pump and control laser pulses)
behavior of the ponderomotive shift. a The photoelectron transient taken
by fixing the pump laser at the blue-edge of the PhO− DBS 11′1 peak
(denoted by the yellow shaded stick in Fig. 1b) while scanning the time-
delay between the pump and control laser pulses. The transient was fitted
with a Gaussian function. b Photodetachment spectra of the PhO− DBS
taken at various delay times between pump and control pulses. The most
prominent 11′1 band (centered at ~ 18,595 cm−1, black dashed line) shows
the blue-shift and asymmetric broadening as the temporal overlap becomes
maximized. The intensity of the non-resonant ps laser pulse (791 nm) was
~85 GW/cm2. Source data are provided as a Source Data file.

Fig. 1 Photodetachment spectra of phenoxide (PhO−) and
4-cyanophenoxide (4-CP−) with and without the control laser pulse.
a Molecular anions were excited by the pump laser pulse (red vertical
arrows) to the DBS (PhO−) or QBS (4-CP−). In the presence of the non-
resonant control pulse, all the quantum levels of DBS or QBS showed the
blue-shift whereas those of ground anions are little affected. Approximate
non-valence orbital shapes of the DBS and QBS are depicted. Picosecond
photodetachment spectrum of the b PhO− and c 4-CP− with (red) or
without (blue) the non-resonant control pulse (791 nm, ~ 85 GW/cm2) at
the zero-time delay. Electron affinity (EA) in the absence of the control
pulse is labeled in green. The vibrational mode assignments of the PhO−

DBS (or 4-CP− QBS) were denoted on the corresponding peaks (see the
text). The yellow bar in b denotes the pump laser wavelength where the
photoelectron was monitored as a function of the delay time between the
pump and control laser pulses (Fig. 2a). Source data are provided as a
Source Data file.
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expressed as13;

αeðωÞ ¼ � e2

meω
2

ð2Þ

where ω is the angular frequency of the control laser pulse. In the
classical treatment, therefore, the lift-up energy (Up) from the
ponderomotive effect is then given as follows for the free-electron.

Up ¼
e2E2

4meω
2

ð3Þ

Obviously, this so-called ponderomotive potential (Up) of the free
electron is linearly proportional to the laser intensity (I∝ E2). As the
driving force for Up in DBS or QBS is identical, the blue-shift of
the 11′1 DBS band of PhO− or the 12′1 QBS band of 4-CP− gives
the linear relationship with the laser intensity as expected (Fig. 3
and Supplementary Fig. 2). However, the slopes of Δṽ versus I are
found to be quite different to each other. Namely, compared to the
slope of η= ðjαej=2ϵ0c Þ for the free-electron model from Eq. (3),
the linear fit to the experiment gives the slope of (0.26 ± 0.05) η or
(0.75 ± 0.05) η for the PhO− DBS or 4-CP− QBS, respectively.

The difference between DBS and QBS in the ponderomotive
shift. As the excess electron is still loosely bound in both DBS or
QBS, its smaller slope (which is equivalent to the smaller effective
polarizability) compared to the free-electron model seems to be
quite reasonable. Namely, at the same intensity of the control laser
pulse, the ponderomotive force on the quasi-free electron in DBS or
QBS is smaller than that on the free-electron. This is in accord with
the previously reported experiments on the atomic Rydberg
orbitals22,24,52. Although the quantitative estimation of the effective
polarizability seems to be a formidable task, it would be quite
meaningful to inspect the difference between DBS and QBS in
terms of the magnitudes of the ponderomotive forces on their
excess electrons. As the slope of the 4-CP− QBS is much steeper
than that of the PhO− DBS, the excess electron of the former could
be considered to behave more like a free-electron compared to that
of the latter. This seemingly makes sense as the electron binding
energy of the 4-CP QBS (~20 cm−1) is much smaller than that of
the PhO− DBS (~97 cm−1). That is, the loosely-bounded electron
in the former is more polarizable compared to the relatively tighter-
bounded electron in the latter. In order to testify this simple con-
jecture, we did carry out the similar experiment on 4-BP− as its
DBS has the small electron binding energy of ~24 cm−153, which is
comparable to that of 4-CP− QBS. Surprisingly, however, the Δṽ:I
slope of the 4-BP− DBS is found to be (0.35 ± 0.07) η, Fig. 3, which
is slightly larger than that of the PhO− DBS but it is still quite
smaller than that of the 4-CP− QBS. The experimental fact that the
effective polarizability of the 4-CP− QBS is much larger than that of
the 4-BP− DBS, even though their electron binding energies are
nearly same, indicates that the electron binding energy may not be
the major distinguishing factor in dictating the effective polariz-
abilities of NBS.

For the elaborate explanation for the difference of QBS and
DBS, the pseudo-potential function of the monopole-quadrupole
(VQ(r,θ)) or monopole-dipole (Vμ(r,θ)) interaction, respectively,
has been invoked in the polar (r,θ) coordinates where r or θ is the
radial distance or the polar angle with respect to the center of the
quadrupole (or dipole), respectively54.

VQðr; θÞ ¼ �Qð3cos2θ � 1Þ
4r3

1� exp � 2r
ffiffiffiffiffiffiffijQjp

� �5� �� �

ð4Þ

Vμðr; θÞ ¼ � μ cos θ
r2

1� exp � 2r
μ

� �3
( )" #

ð5Þ

here, Q is the normalized quadrupole moment and μ is the dipole
moment. Even though these potential functions may not exactly
represent the templates for the quantum-mechanical non-valence
orbitals of QBS or DBS, their characteristics in terms of the
orbital shape could be approximately inferred. For the compar-
ison of QBS and DBS having the similar electron binding energy,
the above potential functions are visualized for the 4-CP− QBS or
4-BP− DBS by plugging the corresponding quadrupole or dipole
moment into Eqs. (4) or (5), respectively (Fig. 4). Interestingly,
according to these potentials, the non-valence orbital of the
4-CP− QBS is likely to be much more diffusive along both the
radial and angular coordinates compared to that of the 4-BP−

DBS. In the classical sense, the extent of the instant delocalization
of the charged particle by the external oscillating electric field is
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Fig. 3 The (control laser) power-depenent ponderomotive shifts. a
Photodetachment spectra of the PhO− DBS at various intensities of the
control laser pulse. Intensity of the control ps laser pulse for each spectrum
is denoted. The most prominent 11′1 peak and adjacent 18′1 peak were
labeled above the corresponding peaks (black dashed lines). b The blue-
shift (Δ~ν) of the PhO− DBS (11′1, red circle), 4-CP− QBS (12′1, blue circle),
and 4-BP− DBS (11′1, yellow circle) are plotted versus the intensity of the ps
control laser pulse. The ponderomotive shift of the free-electron model
from Eq. (3) (black solid line) is shown for the comparison. The linear fits to
the experiment are given with experimental error bars (±1σ), determined
from the multiple measurements (>10) of the photodetachment spectra.
The pump laser intensity was ~10 GW/cm2 for the 4-CP− QBS whereas it
was ~90 GW/cm2 for the 4-BP− and PhO− DBSs. The same experiment
with the much-reduced pump laser intensity (~10 GW/cm2) has been
carried out for the PhO− DBS, showing that the slope is barely influenced
by the pump laser intensity (Supplementary Fig. 5). Source data are
provided as a Source Data file.
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also expected to be larger in the 4-CP− QBS compared to that in
the 4-BP− DBS, as the force gradients with respect to the
displacement of r, for example, is much gentler (steeper) in the
former (latter) compared to the latter (former). In addition,
considering the asymmetric electron charge distribution of DBS,
we may envision the electron in DBS feels more the effect of the
anionic core than that in QBS, and accordingly the free-electron-
like character can be reduced in the case of DBS.

In summary, we have observed the ponderomotive effect on
the quasi-free electron in the non-valence bound states of the
polyatomic molecules. The entire DBS or QBS quantum states
show the clear-cut blue-shifts and asymmetric broadening of
which magnitudes are linearly proportional to the intensity of the
non-resonant control laser pulse. It has been found that the non-
valence electron behaves more like a free electron in the QBS
compared to that in the DBS, indicating that the non-valence
orbital of the QBS is more diffusive and thus more polarizable
upon the external oscillating electromagnetic field. Our finding
here strongly promises that the chemicophysical properties of the

polyatomic systems could be manipulated by utilizing the
ponderomotive force on the quasi-free electron residing in the
non-valence bound states, paving a new way for the laser control
of polyatomic molecules.

Methods
Electrospray ionization-photoelectron imaging set-ups. For sampling, 1 mM of
phenol (>99.5%, TCI chemicals Inc.), 4-cyanophenol (>98.0%, TCI chemicals Inc.),
or 4-bromophenol (>98.0%, TCI chemicals Inc.) was dissolved in the 9:1 methanol/
water mixture without further purification. 15–20 drops of the 3 M ammonia/
methanol solution were added in order to make the solution of pH ~ 9. The
solution was sprayed into vacuum by a home-made electrospray ionization (ESI)
assembly with the −3000 V ionization voltage. Anions were de-solvated and
focused by a dual-stage ion funnel (IF141, MassTech Inc.) and transferred to a
quadrupole ion trap (Jordan TOF Products Inc.) through the hexapole and octo-
pole ion guides powered by the RF generators (Ardara Technologies L.P.). Before
anions enter the ion trap, a quadrupole mass-filter was used in order to cut-off the
low-mass solvent anions. Target anions were trapped and cooled for ~50 ms in the
cryogenically-cooled ion trap coupled with 8 K He cryostat (Coolpower 10 MD,
Leybold) by colliding with the 4:1 He:H2 mixture of the buffer gas. The internally
cooled anions were extracted from the ion trap and accelerated to the photoelec-
tron velocity-map imaging (VMI) apparatus through the potential re-referencing
tube. Anions are crossed by the picosecond laser pulses in the perpendicular
geometry to emit photoelectrons. Those photoelectrons were accelerated to the
position sensitive detector equipped with the chevron-type microchannel plates
(MCP) backed by the P46 phosphor screen. The signals from the phosphor screen
were recorded by the photomultiplier tube and transferred to the oscilloscope.

Optical set-ups. Picosecond laser pulses were generated from a 1 kHz repetition
Ti:sapphire regenerative amplifier system (Legend Elite-P, Coherent) seeded by a
femtosecond oscillator (Vitara-T, Coherent). Fundamental output (791 nm) from
the regenerative amplifier was used to generate tunable-visible or UV light by an
optical parametric amplifier (TOPAS-800, Light Conversion), which was used for
the excitation (pump) pulse. Remaining fundamental output was used as the strong
non-resonant pulse (control pulse). The delay between pump and control pulses
was controlled by a DC-motor driven optical delay stage (DDS220, Thorlabs)
combined with a retro-reflector (UBBR2.5-1UV, Newport). Laser intensities were
measured using a set of laser power meter (FieldMaxII-TO, Coherent) and power
sensor (PM10, Coherent). Beam waists (1/e2) of the pump or control pulses at the
ion-laser interaction region were 385 μm or 890 μm, respectively. The pump pulse
was more tightly focused than the control pulse in order to make the maximum
number of ions influenced. Spatial and temporal overlaps between pump and
control laser pulses were verified by monitoring the sum frequency generation
(SFG, ωSFG= ωpump+ ωcontrol) signal from a beta-barium borate (BBO) crystal
located outside the vacuum chamber. Both pump and control pulses were guided
into the BBO crystal by a flip mirror. The BBO crystal was located so that both
pulses are focused into the identical ion-laser interaction region. By adjusting the
position of the focusing lenses (spatial overlap) and delay stage (temporal overlap),
the maximum SFG intensity was achieved. The SFG signal was collected by a set of
triangular prism and photodiode detector. Pulse duration of the both pump and
control pulses was estimated to be ~1.7 ps. Cross-correlation of pump and control
pulse was measured to be ~2.88 ps by SFG in a BBO crystal.

Data availability
The datasets generated and/or analyzed during the current study are available within the
paper as a source data. Source data are provided with this paper.
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