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ABSTRACT: Autler−Townes (AT) splitting has been experimentally observed in
the optical transition between the zero-point levels of S1 and S0 for supersonically
cooled 2-methoxythiophenol, 2-fluorothiophenol, and 2-chlorothiophenol. This is
the first experimental observation of the light-dressed quantum states of polyatomic
molecules (N > 3) in the electronic transition. In the resonance-enhanced ionization
process involving the optically coupled states, if Rabi cycling is ensured within the
nanosecond laser pulse, AT splitting is clearly observed for the open system for
which the excited-state lifetime is shorter than hundreds of picoseconds.
Semiclassical optical Bloch equations and a dressed-atom approach based on the
three-level atomic model describe the experiment quite well, giving deep insights
into the light−matter interaction in polyatomic molecular systems.

Autler−Townes (AT) splitting was discovered in 1955 for
a microwave transition of the OCS molecule.1 The AT

doublet, caused by the strong resonant field between the
optically coupled states, has since been generally accepted as
the prototypical manifestation of the dynamic AC Stark effect.
The dressed-atom approach that deals with the coupled system
of atom and driving photons has been quite successful in
explaining the experimental observation, providing the under-
lying physical insights. Actually, dressing the quantum state
with the strong optical field is essential for the manipulation of
atomic or molecular motions in terms of cooling,2,3 trapping,4

or controlling chemical reactions.5−7 Although the AT splitting
is quite general, its experimental observation has been mostly
confined to atoms,8−12 artificial atoms,13−15 or diatomic
molecules.16−29 For instance, AT splitting has never been
reported for polyatomic molecular systems (N > 3) in the
electronic transition. In fact, AT splitting has not been
anticipated for polyatomic molecules as obviously there are
so many internal degrees of freedom that hamper the coherent
Rabi oscillation. The high density of states in polyatomic
molecules is strongly responsible for the lack of optical
coherence. Therefore, it has long been well known that AT
splitting should be negligible in the spectroscopy of polyatomic
molecules.30−35

Surprisingly, however, AT splitting has been clearly observed
here for polyatomic molecular systems under certain circum-
stances, allowing the direct observation of the dressed state in
polyatomic molecules. The experiment could be explained well
by the semiclassical optical Bloch equations based on the open
three-state atomic model (Figure 1). Remarkably, AT splitting
is found to be robust if the coherent Rabi frequency and

dephasing dynamics of the coupled eigenstates are within
certain ranges even for polyatomic molecules. As the AT
splitting is a consequence of the light−molecule interaction,
our new observation should shed new light on the
manipulation of polyatomic molecules in terms of not only
cooling or trapping but also control of the reaction.
Figure 1a shows the resonant two-photon ionization (R2PI)

spectrum of supersonically cooled 2-methoxythiophenol (2-
MTP; C7H8OS) which is a 17-atom molecule. The laser pulse
with a temporal duration of 5 ns and a bandwidth of 0.4 cm−1

was used to pump the S1 (ππ*)−S0 transition of 2-MTP,
whereas the D0−S1 ionization occurs within the same laser
pulse. The R2PI spectrum then represents a variety of S1−S0
vibronic transitions, and the peak shape of each vibronic band
reflects the rotational-state distributions of coupled states
subject to symmetry conservation and rotational temperature.
Under these supersonic jet conditions, the rotational temper-
ature is estimated to be 1.1 K, and the peak shape of each
vibronic band is supposed to be reproduced well by the
simulation based on the asymmetric rotor analysis.36 This
method has been routinely applied for the spectral analysis of
the R2PI bands in general. The influence of the increase in
laser intensity is usually anticipated to be like the increase in
peak intensity, saturation broadening, or the emergence of the
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multiphoton background signal.37 Surprisingly, however, the
S1−S0 origin band that involves the optical transition between
the zero-point levels of those two states is found to show clear-
cut doublet features as the pump laser intensity increases. The
band shape is broadened, and the split of the doublet is linearly
proportional to the electric field of the laser light (Figure 1).
More interestingly, AT splitting is found to be evident only for
the S1−S0 origin band. The next three upper-lying R2PI bands
above the origin do not show the doublet features even at the
strong laser intensity where clear AT splitting for the origin
band is observed (Figure 1a), although a tiny AT splitting is
observed only in the 103 cm−1 vibronic mode (see the
Supporting Information). This experimental fact already tells
us that the coherent Rabi oscillation is essential for AT
splitting even in polyatomic molecules. Namely, for the
vibronic transition between states S1 (νn′ = 1) and S0 (νn″ =
0), the resonant energy will be E1 = E0 + hνn′ when quantum
numbers for all other vibrational modes except the nth mode
are zero. Here, E0 is the resonant energy for the S1−S0 origin
band and hνn′ is the vibrational energy of the nth mode in state
S1. In this circumstance, the optical field given for the S1 (νn′ =
1)−S0 (νn″ = 0) transition is not resonant with the most
probable transition between states S1 (νn′ = 1) and S0 (νn″ =
1) according to the Franck−Condon principle. This would

hamper the coherent Rabi oscillation. Naturally, intrusion of
multiple states other than the optically coupled states happens
quite often in polyatomic molecules, and this is regarded as the
intrinsic reason why the laser manipulation of molecules is
extremely difficult. Ironically, the experimental fact that only
the S1−S0 origin band shows the clear-cut doublet feature at
the strong optical field once again confirms that our
observation originates from AT splitting.
For the interpretation of the experiment, we use the

semiclassical optical Bloch equations based on the three-state
atomic level model. In this case, the first (|S0⟩) and second (|
S1⟩) lowest states are optically coupled whereas the third state
(|D0⟩) of the ionized continuum acts as a spectator as depicted
in the inset of Figure 1a. The dynamics of three levels could be
then described by the following equations.38

q q t v R q( ) ioṅ = −Γ − Ω − (1)

p q t v( )ȧ = Γ + Ω (2)

u u vtγ δ̇ = − − (3)

v v u
t

q p
( )
2

( )tγ δ̇ = − + +
Ω

−
(4)

q and p are the populations of states S1 and S0, respectively.
u(v) is the real (imaginary) part of the optical coherence
between states S1 and S0. Γ is the total decay rate of state S1. Γa
is the population decay rate from state S1 to optically coupled
state S0. It should be noted that we deal with the open system
where Γ ≫ Γa.

33,39 γt is the transverse decay rate of the optical
coherence given by the relationship γt = (Γ + γlaser)/2, where
γlaser is the line width of the pump laser pulse. δ is the
frequency detuning from the resonance. The Rabi frequency is
given by the equation Ω(t) = Ω1 exp[−2(log 2)t2/t02], where t0
is the temporal full width at half-maximum (fwhm) of the laser
pulse and Ω1 is the amplitude of the Rabi frequency. The final
term on the right-hand side in eq 1 represents the
photoionization by the probe photon with a rate Rion(t) =
λσionI(t)/(hc), where σion is the photoionization cross section,
I(t) = I0 exp[−4(log 2)t2/t0

2], and I0 is the amplitude of the
intensity of the ionization laser pulse. As the pump and probe
occur with the same laser pulse in our experiment, the
relationship I0 = ε0cℏ

2Ω1
2/(2μ2) holds when μ is the transition

dipole moment between states S1 and S0. The R2PI signal is
then given by

R t q t t( ) ( ) dion∫
−∞

∞

(5)

The lifetime (Γ−1) of state S1 of 2-MTP at its zero-point
level has been estimated to be 44 ps.39 On the basis of
empirical parameters, the final band shapes are calculated from
eq 5 and then followed by the convolution with a Gaussian
function (fwhm of 0.5 cm−1) (see the Supporting Informa-
tion). Remarkably, the simulation by the numerical solution
reproduces the experiment extremely well (Figure 1b). The AT
splitting behavior in terms of the increase in the split with an
increase in the square root of the laser intensity and the peak
broadening are nicely reproduced by the simulation.
We employ the dressed-state approach to gain further

physical insights. Here, the population of state S1 (q) is given
as follows40

q p psin cos1
2

2
2θ θ= + (6)

Figure 1. (a) R2PI spectrum of 2-MTP showing several vibronic
transitions, including the S1−S0 origin band taken at a pulse energy of
400 μJ. The inset depicts schematics of three levels and the chemical
structure of 2-MTP. (b) Experimental (black solid) and theoretical
(red dotted) R2PI spectra of the S1−S0 origin transition of 2-MTP at
different pulse energies ranging from 15 to 2500 μJ/pulse. The
simulation parameters are provided in Table S1 and Figure S2 in the
Supporting Information. Briefly, Γ = 44 ps, μ = 1.42 D, γ = 0.4 cm−1,
and σ = 10−17 cm2. The laser pulse was not focused. The diameter of
the pulse profile is estimated to be 2 mm, and the power density is
calculated to be 107 W/cm2 when the laser pulse intensity is 500 μJ/
pulse. (c) Peak splitting vs the square root of the laser pulse energy
(I1/2), giving the straight line with R2 = 0.992.
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where p1 and p2 are the populations of the low and upper
dressed states, respectively. On the right-hand side of eq 6, the
off-diagonal density matrix element, −sin 2θ Re(ρ), has been
ignored as it is very weak under our experimental condition,
where ρ is the optical coherence in the dressed state. As both
dressed states of p1 and p2 are strongly coupled, the density
matrix equations could be numerically solved to give the
effective excited-state population as a function of the detuning
frequency (δ) (see the Supporting Information) (Figure 2). In

either case, the analytic solution is obtained under the
assumption Γb ≡ Γ − Γa ≪ Γ, where Γb is the rate of decay
of state S1 into states other than the ground state. This
assumption of Γb ≪ Γ was necessary for the analytical solution
to the rate equations of eqs 1−4, which sounds quite
contradictory to the experimental condition of Γ ≫ Γa.
However, the resultant analytical solution is surprisingly found
to be quite consistent with the accurate numerical solution, as
shown Figure 2d as follows. The resultant analytic form of q is
then given by
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where T is defined as the time window for the ionization
detection. The maxima of q are obtained by differentiating eq 9
with respect to δ, and the separation (Δ) of the doublet is
given by
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tγ γΔ =
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Γ

Ω −
(10)

The splitting value (Δ) calculated from the dressed-atom
approach as a function of Γb and Ω1 is shown in Figure 2d.
Although eq 10 is valid only if Γb ≪ Γ, it is still fully consistent
with the result from the numerical solution for a wide range of
Γb values. It is evident that two dressed states of p1 and p2
merge into a singlet when Γb = 0, indicating that discrimination
of two dressed states is not anticipated for the closed system.
As the system becomes opened giving a Γb of 0.2Γ or 0.4Γ, two
dressed states split to give a clear doublet feature (Figure 2a−
c). Intuitively, when the system is closed, the population of
state S1 at the resonance is expected to be larger than that at
the off-resonant detuning. As the system becomes more
opened, the population of state S1 at the resonance is depleted
more substantially than that at the off-resonant detuning. This
makes the off-resonant populations of dressed states at
detuned frequencies stand out, giving the apparent AT
splitting.
Interestingly, we could extract the threshold condition for

the observation of the non-zero AT split value as follows.

i
k
jjjjj

y
{
zzzzzT 2 1b

t

1
2

γ
Γ ≥ +

Γ
Ω (11)

For 2-MTP, the S−H predissociation is the major dephasing
process of state S1 that satisfies the open-system condition of
Γb ≈ Γ,33,39 rationalizing the AT splitting observation even at
the low laser intensity. In these circumstances, Δ is
proportional to tγ , suggesting that AT splitting strongly

depends on the excited-state lifetime (τ = 1/Γ). Namely, as the
state S1 lifetime decreases, the AT split energy gap increases. If
the laser intensity is 500 μJ/pulse, AT splitting is predicted to
be observed when τ is smaller than hundreds of picoseconds
(Figure 2e).
To verify our theoretical analysis of AT splitting, we have

carried out similar experiments on 2-fluorothiophenol (2-FTP)
and 2-chlorothiophenol (2-CTP); their state S1 lifetimes have
been measured to be 12.3 and 227 ps, respectively.39

Remarkably, for both 2-FTP and 2-CTP, AT splitting is
observed only for the S1−S0 origin band, and its behavior with
the laser intensity exactly follows the theoretical prediction
(Figure 3). The plot of AT splitting versus the square root of
the laser intensity for all three molecules (2-MTP, 2-FTP, and
2-CTP) shows a straight line. AT splitting of 2-FTP especially
stands out giving the largest Δ, whereas that of 2-CTP shows a
much reduced AT split value. This is quite consistent with our
model. It should be noted that Δ depends on both Γand μ.
The transition dipole moment calculated from the EOM-
CCSD method gives μ values of 0.94, 1.42, and 0.60 D for 2-
FTP, 2-MTP, and 2-CTP, respectively.32,41 Although these
values do not predict the experiment quantitatively, the
qualitative trend among these three cases could be partially

Figure 2. Calculated excited-state populations decomposed into the
distinct contributions of p1 (blue) and p2 (red) dressed states as a
function of the detuning frequency when (a) Γb = 0, (b) Γb = 0.2Γ, or
(c) Γb = 0.4Γ. (d) Behavior of Δ as a function of Γb (black) and Ω1
(red). For the plot of Δ vs Γb, parameters were set to be T = 20/Γ, γt
= 0.5Γ, and Ω1 = 5Γ. For the Ω1 dependence of Δ, the following
parameters were used: T = 20/Γ, γt = 0.5Γ, and Γb = 0.2Γ. In both
cases, numerical (solid) and analytic solutions from eq 10 (dashed)
agree very well. (e) Calculated splitting as a function of log Γ from eq
11; all of the parameters are the same as those of 2-MTP at 500 μJ/
pulse. As the detuning varies from zero, the effective Rabi frequency
increases and the energy level of each eigenstate shifts. When the laser
frequency is scanned, each contribution smears out and becomes
broad, and thus, the centers of the accumulated populations of two
dressed states are located at the non-zero detuning.
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explained. It should be noted that AT splitting of 2-MTP(D)
of which the SH moiety is substituted by SD is less
pronounced compared to that of 2-MTP, yet it stands out
compared to that of 2-CTP. As the lifetime of 2-MTP(D) is
estimated to be 640 ps,39 AT splitting of 2-MTP(D) is
supposed to be much less pronounced compared to that of 2-
CTP (τ = 227 ps). This inconsistency should come from our
simplified three-state atomic model employed in treating the
complex molecular systems. As the molecule becomes more
complicated, the atomic model is less validated in general. For
instance, 2-MTP is the even more complex system compared
to 2-FTP or 2-CTP as the number of degrees of freedom (3N
− 6) is 45 for 2-MTP but only 33 for 2-FTP and 2-CTP. The
influence of the complexity on the state dressing of polyatomic
molecular system should definitely be examined further in the
near future.
In summary, Autler−Townes splitting, which has long been

considered to be negligible in polyatomic molecules, has been
experimentally observed here for the first time in the optical
transition between the zero-point levels of states S1 and S0 of
polyatomic molecules of 2-methoxythiophenol, 2-fluorothio-
phenol, and 2-chlorothiophenol. It has been found, through
the semiclassical optical Bloch equations and dressed-atom
approach based on the three-level atomic model, that the
optical dressing of quantum states is plausible even for the
polyatomic molecule if it provides the open system of which
the excited-state lifetime is shorter than hundreds of
picoseconds. The AT splitting observed here in large molecules
sheds new light on the optical manipulation of polyatomic
molecular system in a variety of ways.

■ EXPERIMENTAL METHODS
The details of the experimental setup had been reported
elsewhere.30 Briefly, the samples were heated to 30−100 °C in

the reservoir to achieve the proper vapor pressure, mixed with
helium or neon, and expanded through a nozzle orifice (Even-
Lavie valve) into a high-vacuum chamber with a backing
pressure of 2−10 atm at 10 Hz. The resultant supersonic jet
was collimated by a 1 mm diameter skimmer before it was
crossed by the nanosecond ultraviolet (UV) laser pulse that
was obtained by frequency doubling of the dye laser
(Lumonics HD-500) pumped by the second harmonic of a
Nd:YAG laser (Surelite II-10). The ion signal was detected by
a mass-gated time-of-flight multichannel plate (MCP)
detector, digitized by an oscilloscope, and stored in the
computer. The signal was averaged for 160 laser shots while
the scanning interval was fixed at 0.002 nm for each
measurement. The intensity of the UV laser pulse was finely
tuned by the combination of several reflective neutral density
filters in the range of 10−3000 μJ/pulse.
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