Conformer Specific Excited-State Structure of 3-Methylthioanisole

Heesung Lee, So-Yeon Kim, Jean Sun Lim, Junggil Kim, and Sang Kyu Kim*

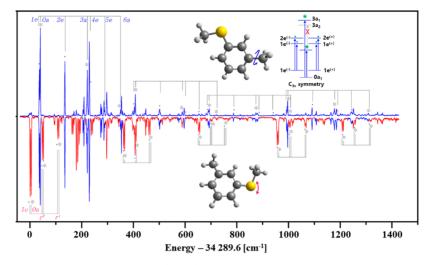
Cite This: https://dx.doi.org/10.1021/acs.jpca.0c03452

	ACCESS	III Metrics & More	Article Recommendations		s Supporting Information
--	--------	--------------------	-------------------------	--	--------------------------

ABSTRACT: Trans and cis conformers of 3-methylthioanisole have been spectroscopically investigated to reveal the conformer specific structural changes upon the $S_1(\pi\pi^*)-S_0$ excitation. The conformational cooling during the supersonic expansion is found to be quite efficient in the Ar carrier gas giving the *trans* conformational isomer exclusively in the molecular beam, whereas both *trans* and *cis* conformers are populated in the jet when the sample is carried in Ne. Using the Stark deflector, *trans* and *cis* conformers are unambiguously identified, showing the distinct Stark deflection profiles according to their

sufficiently different dipole moments of 1.013 or 1.670 D, respectively. For the *trans* conformer, the methyl moiety on the *meta*position adopting the eclipsed geometry in S₀ transforms into the staggered geometry in S₁ to activate a series of the CH₃ torsional mode. A Hamiltonian with the one-dimensional sinusoidal torsional potential is solved using the free-rotor basis set to explain the experiment, giving the 3-fold torsional barrier of 34 and 304 cm⁻¹ for S₀ and S₁, respectively. For the *cis* conformer, on the other hand, the CH₃ torsion is little activated in the S₁-S₀ transition as both S₀ and S₁ adopt the staggered geometry at the minimum energy points. The doublet of each band of the *cis* conformer is ascribed to tunneling split due to the very low CH₃ torsional barrier of 27 cm⁻¹ in S₀. It is found that the *cis* conformer undergoes a planar to pseudoplanar structural change upon the S₁-S₀ transition. Theoretical calculation based on the double-well model potential curve could explain the experiment quite well, suggesting that the SCH₃ moiety of the *cis* conformer in S₁ becomes out-of-plane with respect to the plane of the phenyl moiety. This implies that excited-state predissociation dynamics of *trans* and *cis* conformers of the title molecule might be different.

INTRODUCTION


The effect of methylation on electronic structure and reaction dynamics has been one of the central subjects in organic syntheses or biological chemistry as methylation is one of the most important epigenetic processes. From the physical chemist's viewpoint, methylation has been utilized as a great tool for the investigation of intramolecular vibrational redistribution (IVR) dynamics. For instance, methylation on a benzene ring gives rise to the much accelerated IVR process as the CH₃ moiety rotates nearly freely around the H₃C-C bond axis.¹⁻³ IVR dynamics, especially for the excited-state molecular system, is very important as it tends to delocalize the given energy over the entire nuclear framework of the molecular system. Even though it hampers the design of the bond-selective chemistry, IVR helps the molecule to protect its integrity against external perturbations such as high energy radiation or thermal waves. Namely, the efficient and fast IVR could be quite essential for the system to maintain its chemical and/or biological activities in harsh environments. As a model system for the investigation of IVR dynamics, therefore, spectroscopy⁴⁻⁸ and dynamics of a variety of methylated molecular systems have been extensively and intensively studied to date. As there are already many excellent review articles on IVR,^{9–11} we will rather focus on the title molecule instead of mentioning previous other examples.

Thioanisole has been intensively investigated in recent years.^{12–18} As the conical intersections are encountered along the $\pi\pi^*$ -mediated S-CH₃ bond predissociation dynamics,

thioanisole has served as an ideal model system for disentangling complicated nonadiabatic chemistry happening in the proximity of or remote from the conical intersection seam. Particularly, it has been found that the subtle changes of excited-state molecular structures given by the specific S1-S0 vibronic transitions dictate the reaction pathway along either the adiabatic or nonadiabatic channel in terms of the product yields and reaction rates,14 from which one can infer the structure and dynamic property of the conical intersection. Whereas a number of vibronic transitions could be utilized for the exploration of the molecular structures associated with the multidimensional conical intersection seam, one could also employ chemical substitution to modify and engineer the molecular structure especially because the optical transition is often limited by the Franck-Condon (FC) overlap. As a typical example, the 2-fluorothioanisole molecule undergoes an apparent structural change from planar to nonplanar geometry upon the S1-S0 optical transition in contrast to the case of thioanisole of which the structure remains planar in both S₁ and S_0 .¹⁸ The nonplanar geometry of the S_1 2-fluorothioanisole has been found to lead to a quite different dynamic behavior

Received:	April 18, 2020
Revised:	May 12, 2020
Published:	May 13, 2020

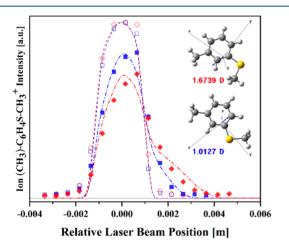
Figure 1. R2PI spectrum of 3-methylthioanisole obtained in (upper) Ar carrier gas with a backing pressure of 1 atm or in (lower) Ne carrier gas with a backing pressure of 3 atm, respectively. Transitions of *trans* (blue) and *cis* (red) conformers are clearly distinct. The progression bands of the methyl internal rotor are activated as denoted in the upper trace. The torsional series is well identified with symmetry species in C_{3V} . According to the hole-burning spectroscopy (see Supporting Information) the e–e (denoted as dots) and a–a (denoted as asterisks) transitions have been unambiguously identified. For the *cis* conformer (lower trace), the out-of-plane dihedral torsional mode of the methylthio (SCH₃) moiety is strongly activated. The doublet is due to the a"–e" tunneling split through the very low CH₃ torsional barrier in the S₀ *cis*. In the inset, calculated (RICC2, aug-cc-pVDZ) minimum S₁ energy structures of two conformers are shown with arrows corresponding to the geometrical change upon the S₁–S₀ optical transition. The energetic diagram illustrates the symmetry conservation for the $C_{3\nu}$ methyl internal rotation. The 0⁰₀ origin (1e′– 1e″) transition energies are found to be 34 289.6 cm⁻¹ (*cis*) and 34 325.7 cm⁻¹ (*trans*).

along the S-CH₃ predissociation reaction pathway, avoiding the surface crossing near the asymptotic limit. In this regard, it is a natural question whether or not the methylation of thioanisole influences the excited-state reaction dynamics, especially as the nonadiabatic dynamics is so sensitive to the detailed molecular structures.

Herein, we have found that the 3-methylthioanisole (3-MTA) in two distinct conformational structures of *cis* and *trans* shows rich spectroscopic features, revealing the structural change of each conformational isomer upon the S_1-S_0 optical excitation.

The *trans* conformer undergoes the eclipsed-to-staggered geometrical change upon the S_1-S_0 transition as long as the relative orientation of the CH₃ moiety with respect to the SCH₃ moiety is concerned. On the other hand, the *cis* conformer shows little change in the CH₃ torsional geometry as it remains in the staggered form even in S_1 . However, the SCH₃ moiety becomes out-of-plane in S_1 of the *cis* conformer. Theoretical calculations based on the simple one-dimensional potential energy function explains the experiment quite well.

EXPERIMENTAL METHODS


The experimental setup was described in a previous work.^{16–18} The 3-MTA was purchased (MediGen; >99% purity) and used without further purification. The sample was heated to 75° to be mixed with the Ne or Ar carrier gas. The supersonic jet was produced by the expansion of the gas mixture through a nozzle orifice with a diameter of 0.5 mm (General valve Series 9), followed by a skimmer. The Nd:YAG laser (Surelite II-10, Continuum) was used to pump a dye laser (Lumonics, HD-500) to generate the UV laser pulse in the 280.5–292 nm region by frequency doubling through a beta barium borate (BBO) crystal. The parent ion signal was detected by a position sensitive detector equipped with microchannel plates (MCP), (Burle, $\phi = 40$ mm), and phosphor. The Stark-deflector setup had been described previously.²¹ For the UV–

UV hole burning spectroscopy, another Nd:YAG + dye laser setup was used to produce the laser pulse in the 280.5-292 nm region. The delay time between the laser pulses for holeburning and probing was set to be 200 ns. Experimental deflection profiles were compared to the simulated profiles using the CMIfly code.²² Monte Carlo particle sampling was used up to I = 18 with 300 particles per each (I, Ka, Kc, M) state. Stark shift was allowed up to J = 30. Rotational temperature was fixed at 6 K. Rotational constants and dipole moments calculated using the Becke, 3-parameter, Lee-Yang-Parr (B3LYP) functional with the 6-311++G(3df,3pd) basis set was used in the CMIstark program.²³ The CMIfly code was used to record the verticality (molecular position shift) with the time step of 1 μ s. The molecular beam velocity along the zaxis (beam propagation direction) was fixed, whereas its dispersion along the x and y axes was derived from the fit to the experiment. Only half of the populations per each quantum state could reach the detection region.

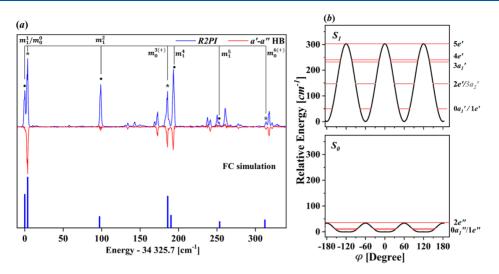
For the calculation of the potential energy curves along the methyl internal rotation and the methylthio group out-of-plane torsion, the second-order coupled cluster model which employs the resolution of the identity approximation (RICC2) was used in the Turbomole 7.0 program.²⁰ After the simple calculation from the Gaussian 09^{19} program with the B3LYP method and the 6-311++G(3df,3pd) basis set for the purpose of initial evaluation, the RICC2 calculations with the aug-cc-pVDZ basis set were performed for the S₀ geometry optimization and harmonic frequency calculations of trans- and cis-3-methylthioanisole conformers. From the minimum energy structure, the potential energy curves were obtained by the relaxed scan where the dihedral (or CH₃ group torsional) angle of the methylthio group with respect to the molecular plane was fixed while all other degrees of freedom were optimized. Calculated reduced mass for the low-frequency out-of-plane vibration was used in a double-well FC simulation of the cis conformer.

RESULTS AND DISCUSSION

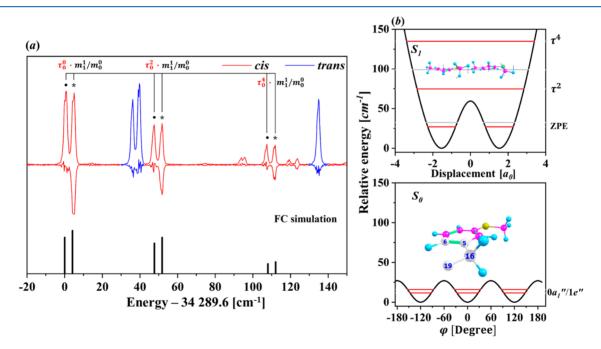
The resonant (1 + 1) two-photon ionization (R2PI) spectrum of the jet-cooled 3-MTA in the Ar or Ne carrier gas is shown in Figure 1, respectively. Interestingly, it has been found that only one conformational species is rather exclusively populated in the Ar jet, whereas both conformers are found to be almost equally probable in the Ne jet. The conformer surviving in the Ar carrier gas is identified as the trans-3-MTA (vide infra). Naturally, it seems to be that the trans conformer is more stable than the *cis* conformer (DFT: 25 cm^{-1} , RICC2: 3 cm^{-1}). The conformational cooling is then most efficient in the collisional cooling process with Ar in front of the nozzle orifice. For a more definite identification of the conformer species, the Stark deflector has been employed to get the deflection profiles of two species in the strong electric field using the distinct S_1 - S_0 spectral origins of two conformers in the Ne jet. We could definitely identify the cis or trans conformer as the former is deflected more than the latter according to their distinct dipole moments of 1.67 or 1.013 D, respectively, Figure 2. Stark

Figure 2. Normalized Stark-deflection profiles obtained for the 0a'-0a'' transitions of (blue) *trans* (34 329 cm⁻¹) and (red) *cis* (34 294.6 cm⁻¹) conformers. Open or filled rectangles represent experimental data at the applied electric field (E) of zero or 80 kV/cm, respectively. Dashed (E = 0) and dashed-dotted (E = 80 kV/cm) lines are simulations (see the text for details). The *cis* conformer (red) shows the more deflected profile compared to the *trans* conformer (blue). Inset molecules are calculated (G09 B3LYP, 6-311++G(3df,3pd)) as minimum energy S₀ structures with their permanent dipole moments.

deflection profiles of both conformers could be simulated quite well. Accordingly, one series of R2PI bands based on the S_1-S_0 origin of 34 289.6 cm⁻¹ is attributed to the *cis* conformer, whereas the other R2PI signals starting from the origin of 34 325.7 cm⁻¹ belong to the *trans* conformer.


The spectral features of two different conformers are very different from each other. For the *trans* conformer, a series of the CH₃ torsional mode stands out quite obviously. Since the torsional motion of the CH₃ moiety, when its barrier is low, belongs to G6 which is isomorphic to C_{3V} , the symmetry species of the associated eigenstates are classified according to the symmetry elements in the C_{3V} point group. In the S₁–S₀ transition, the symmetry in C_{3V} is conserved as far as the CH₃ torsional mode is concerned. Here, we set a one-dimensional Hamiltonian for the CH₃ rotor based on the sinusoidal model potential as

$$H = -F \frac{\partial^2}{\partial \phi^2} + V(\phi)$$
$$V(\phi) = \sum_n \frac{1}{2} V_n (1 - \cos n\phi)$$
$$V(\phi) = \frac{1}{2} [V_3 (1 - \cos 3\phi) + V_6 (1 - \cos 6\phi)]$$


Here F is the reduced internal rotational constant for the hindered rotor around the CH₃ torsional angle (ϕ) . $V(\phi)$ is the one-dimensional potential energy function where V_3 or V_6 is the 3-fold or 6-fold sinusoidal barrier, respectively. The 31 \times 31 Hamiltonian matrix based on the free rotor basis set is then solved to give eigenvalues and eigenfunctions for individual CH₃ torsional modes. The spectrum could be perfectly reproduced when F = 5.34 (or 5.33) cm⁻¹, $V_3 = 34$ (or 304) cm⁻¹, and $V_6 = -25.4$ (or -10) cm⁻¹ for S₀ (or S₁). The torsional barrier in S₀ is very low, giving rise to the tunneling split of 3.8 cm⁻¹ which is responsible for the doublet features of many $S_1 - S_0$ vibronic bands. In S_1 , the 3-fold CH₃ torsional barrier is greatly increased to 304 cm⁻¹ as above, and corresponding eigenvalues reproduce the experiment very well (Figure 3). Especially, as the eclipsed geometry of CH_3 undergoes the structural change to the staggered geometry, a series of the CH₃ torsional mode is found to be significantly activated. Using the simple FC overlap calculation based on the relation of FC = $|\langle \psi_{S_n}(\phi + \alpha) | \psi_{S_1}(\phi) \rangle|^2$, it is found that the CH_3 torsional angle at the minimum energy in S_1 is rotated by $\alpha \sim 58^{\circ}$ from that in S₀, which is compatible with the *ab initio* value (57.9°). It is found that the C_{3V} symmetry of each level is strictly conserved during the S_1-S_0 transition as demonstrated by the hole-burning spectroscopy, Figure 3. While the peak positions and relative intensities of CH₃ torsional bands are well reproduced by the simulation, the assignment for the 193 cm⁻¹ band is not straightforward yet. One may be tempted to assign this band as the 4e'-1e'' transition, but it is less likely as the experiment shows the clear depletion of the 193 cm⁻¹ band upon the hole-burning of the 0a'-0a'' transition.

Namely, since the hole-burning behavior strongly indicates that the 193 cm⁻¹ band originates from the 0a" level in S_{0} , unless the symmetry is broken, it is hardly assignable to one of the CH₃ torsional modes. One possibility would be then that the 193 cm⁻¹ band is the consequence from the coupling of the CH₃ torsional 4e' mode to another otherwise optically dark nearly degenerate mode. The other possibility is that the restriction given by the symmetry conservation among C_{3V} symmetry species is loosened for eigenfunctions located near the top of the torsional barrier, although symmetry breaking for the optical transitions among the CH₃ rotor levels has rarely been reported.^{7,8} The nature of this band is definitely subject to the further investigation. We have found additional series of the CH₃ rotor bands combined with many other vibrational modes, Figure 1. As the trans-3-MTA undergoes a substantial geometrical change, the CH₃ torsional mode is found to be highly activated for all Franck-Condon active modes. Mode assignments are given in the Supporting Information (Table S1) with well-matched theoretical values.

For the *cis* conformer, there is little geometrical change upon the S_1-S_0 transition in terms of the CH₃ rotation with respect to the molecular plane. Namely, the staggered geometry in S_0 remains the same also in S_1 . The doublet feature of each band is clearly observed in the R2PI spectrum of *cis*, giving the split

Figure 3. (a) R2PI spectrum of the *trans* 3-MTA obtained with the Ar carrier gas (upper blue solid line). The hole-burning spectrum after the depletion through the 0a'-0a'' transition is shown just below as a red solid line. The simulated stick spectrum (lower trace) is obtained from the FC simulation (see the text). Dots and asterisks are denoted for "e" and "a" symmetry species of the CH₃ internal rotor, respectively. The hindered rotor transitions are depicted according to the internal rotor quantum numbers (m) of S₀ (subscript) and S₁ (superscript). (b) The sinusoidal model potential energy curves for the CH₃ internal rotor in S₀ and S₁ where φ is the rotational angle of the CH₃ about the C–C axis. Eigenvalues and associated symmetry species are also shown.

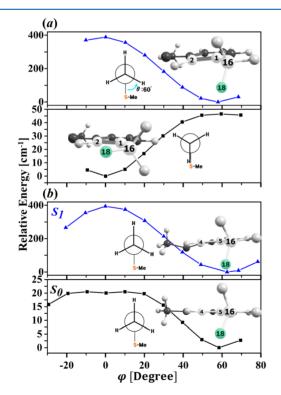


Figure 4. (a) R2PI spectrum of the *cis* 3-MTA (red) obtained with the Ne carrier gas (upper red solid line). The hole-burning spectrum after the depletion through the 0a'-0a" transition is shown just below as a red solid line. The simulated stick spectrum (lower trace) is obtained from the FC simulation (see the text). Dots and asterisks are denoted for "e' and 'a" symmetry species of the CH₃ internal rotor, respectively. The hindered rotor transitions are depicted according to the internal rotor quantum numbers (*m*) of S₀ (subscript) and S₁ (superscript). The out-of-plane dihedral torsional mode (τ) of the SCH₃ moiety with respect to the molecular plane is found to be activated (see the text). The R2PI bands due to the *trans* conformer are denoted as a solid blue line. (b) The sinusoidal model potential energy curve for the CH₃ internal rotor in S₀ (lower) shows the tunneling split when $F = 5.317_7$ (5.301_6) cm⁻¹ and V₃ = 27 (300) cm⁻¹ for S₀ (S₁). The double well potential energy curve ($V_{S_0} = (1/2)k'x^2$, $V_{S_1} = (1/2)k'x^2 + A' \exp(-a'x^2)$) along the out-of-plane dihedral torsional mode is depicted (upper) with associated eigenvalues (see the text). Parameters used are k' = 0.0002419 (0.00016) [hartree/ a_0^2], reduced mass of 2.797 (2.998) [amu] for S₀ (S₁), A' = 0.00058 [hartree], and a' = 0.667 [a_0^2] for S₁. a_0 is the Bohr radius. Inset molecules are calculated (RICC2, aug-cc-pVDZ) (lower) as minimum energy S₀ structure and (upper) out-of-plane SCH₃ torsional vibrational normal-mode displacement, respectively.

energy of 4.1 cm⁻¹. The energetic gap of the split remains identical for all vibronic bands, indicating that the doublet originates from the a''-e'' split in the electronically ground state, also confirmed by the hole-burning spectroscopy, Figure

4. This rather large split of the doublet strongly suggests that the CH₃ torsional barrier in S₀ is very small, giving the estimation of \sim 27 cm⁻¹ for V₃ from the theoretical simulation as described above. Therefore, in contrast to the case of the trans conformer, the series of the CH₃ torsional mode is almost absent in the R2PI spectrum of cis. And yet, on the other hand, it is found that a specific low-frequency vibrational mode is highly activated in the R2PI spectrum of the cis conformer, giving similar patterns for all combined modes including the S_1-S_0 origin (Figure 1). This mode is most likely due to the out-of-plane torsional motion of the SCH₃ moiety with respect to the molecular plane. As this mode is the torsion regarding the dihedral angle between the plane containing the S-CH₃ bond axis and that of the phenyl moiety, the double-well potential in the form of $V_{S_1} = (1/2) k' x^2 + A' \exp(-a' x^2)$ is used to reproduce the experiment. Indeed, the experiment could be fit very well, giving the shape of the S_1 potential curve with calculated eigenvalues (Figure 4). As the SCH₃ dihedral angle with respect to the molecular plane is very critical in terms of the nonadiabatic dynamics in the conical intersection region, the experimental fact that the S₁ structure of the cis-3-MTA adopts the nonplanar geometry at its minimum energy suggests that the S-CH₃ predissociation dynamics of the cis conformer could be somewhat different from that of the trans conformer in terms of the overall nonadiabaticity of the reaction. Indeed, according to our calculation at the RICC2 level with the aug-cc-pVDZ basis set, the cis-3-MTA undergoes the planar-to-pseudoplanar structural change upon the S_1-S_0 transition. Namely, the SCH₃ moiety becomes out-of-plane with respect to the molecular plane in S_1 of *cis*, which is quite consistent with the spectroscopic evidence.

Ab initio calculations for the CH₃ torsional potential energy curve for *cis* and *trans* in both S_0 and S_1 support the experiment very nicely (Figure 5). The eclipsed or staggered geometry is predicted to be more stable in S_0 or S_1 of the *trans*-3-MTA,

Figure 5. Potential energy curve with respect to the CH₃ torsional angle (φ) obtained by the relaxed scan for (a) *trans*-3-MTA and (b) *cis*-3-MTA. Insets show the calculated (RICC2, aug-cc-pVDZ) minimum energy structures with Newman projections.

respectively. Although they do not exactly match with the estimated values from the experiment, the theoretical torsional barrier heights of 47 and 388 cm⁻¹ calculated for S₀ and S₁, respectively, match extremely well with the experiment (*vide supra*). The calculation supports the experiment quite nicely also for the *cis* conformer. The CH₃ torsional barrier height is predicted to be 20 or 394 cm⁻¹ for S₀ and S₁, respectively. As there is little structural change in terms of the CH₃ torsion upon the S₁–S₀ transition of *cis*, the barrier height in S₁ is hardly verified. And yet, the calculated barrier height in S₀ is quite consistent with the simulated value inferred from the split of the doublet in the R2PI spectrum of *cis* (*vide supra*).

CONCLUSIONS

Herein, the conformer-specific structural changes of 3methylthioanisole upon the S_1 ($\pi\pi^*$)- S_0 excitation have been spectroscopically investigated. For the *trans* conformer, the methyl moiety on the meta-position undergoes the eclipsed-to-staggered geometrical change upon the S_1 - S_0 transition, giving the 3-fold torsional barrier of 34 and 304 cm⁻¹ for S_0 and S_1 , respectively. For the *cis* conformer, the CH₃ torsion is little activated though the clearly resolved doublet of each vibronic band gives the very low torsional barrier of 27 cm⁻¹ for the S_0 *cis* conformer. More interestingly, the *cis* conformer is found to be nonplanar in S_1 differently from S_0 , implying that the S-CH₃ bond predissociation dynamics of *trans* and *cis* conformers of 3-methylthioanisole might differ in their nonadiabatic dynamic properties.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpca.0c03452.

Full R2PI with UV–UV hole-burning spectra, selective vibrational mode assignment, relaxed scan for torsional coordinate of methylthio moiety $(-SCH_3)$, methyl-internal-rotation assignment (PDF)

AUTHOR INFORMATION

Corresponding Author

Sang Kyu Kim – Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea; o orcid.org/0000-0003-4803-1327; Email: sangkyukim@kaist.ac.kr

Authors

- Heesung Lee Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea; o orcid.org/0000-0001-7056-4053
- **So-Yeon Kim** Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- Jean Sun Lim Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- **Junggil Kim** Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea

Complete contact information is available at:

https://pubs.acs.org/10.1021/acs.jpca.0c03452

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation (NRF: 2018R1A2B3004534) and the Ministry of Education (2019R1A6A1A10073887) of Korea.

REFERENCES

(1) Parmenter, C. S.; Stone, B. M. The methyl rotor as an accelerating functional group for IVR. J. Chem. Phys. **1986**, 84 (8), 4710–4711.

(2) Moss, D. B.; Parmenter, C. S. Acceleration of intramolecular vibrational redistribution by methyl internal rotation. A chemical timing study of p-fluorotoluene and p-fluorotoluene- d_3 . *J. Chem. Phys.* **1993**, 98 (9), 6897–6905.

(3) Timbers, P. J.; Parmenter, C. S.; Moss, D. B. Acceleration of intramolecular vibrational redistribution by methyl internal rotation. II. A comparison of m-fluorotoluene and p-fluorotoluene. *J. Chem. Phys.* **1994**, *100* (2), 1028–1034.

(4) Gascooke, J. R.; Lawrance, W. D. Methyl rotor dependent vibrational interactions in toluene. *J. Chem. Phys.* **2013**, *138* (13), 134302.

(5) Gardner, A. M.; Tuttle, W. D.; Whalley, L.; Claydon, A.; Carter, J. H.; Wright, T. G. Torsion and vibration-torsion levels of the S_1 and ground cation electronic states of para-fluorotoluene. *J. Chem. Phys.* **2016**, *145* (12), 124307.

(6) Tuttle, W. D.; Gardner, A. M.; Whalley, L. E.; Wright, T. G. Vibration and vibration-torsion levels of the S1 state of para-fluorotoluene in the 580-830 cm⁻¹ range: Interactions and coincidences. J. Chem. Phys. **2017**, 146 (24), 244310.

(7) Ichimura, T.; Suzuki, T. Photophysics and photochemical dynamics of methylanisole molecules in a supersonic jet. *J. Photochem. Photobiol.*, C **2000**, *1* (1), 79–107.

(8) Kinoshita, S.-i.; Kojima, H.; Suzuki, T.; Ichimura, T.; Yoshida, K.; Sakai, M.; Fujii, M. Pulsed field ionization zero kinetic energy photoelectron study on methylanisole molecules in a supersonic jet. *Phys. Chem. Chem. Phys.* **2000**, *3* (22), 4889–4897.

(9) Tardy, D. C.; Rabinovitch, B. S. Intermolecular vibrational energy transfer in thermal unimolecular systems. *Chem. Rev.* 1977, 77 (3), 369-408.

(10) Nesbitt, D. J.; Field, R. W. Vibrational Energy Flow in Highly Excited Molecules: Role of Intramolecular Vibrational Redistribution. *J. Phys. Chem.* **1996**, *100* (31), 12735–12756.

(11) Boyall, D.; Reid, K. L. Modern studies of intramolecular vibrational energy redistribution. *Chem. Soc. Rev.* **1997**, *26* (3), 223–232.

(12) Lim, J. S.; Kim, S. K. Experimental probing of conical intersection dynamics in the photodissociation of thioanisole. *Nat. Chem.* **2010**, *2* (8), 627–632.

(13) You, H. S.; Han, S.; Yoon, J.-H.; Lim, J. S.; Lee, J.; Kim, S.-Y.; Ahn, D.-S.; Lim, J. S.; Kim, S. K. Structure and dynamic role of conical intersections in the $\pi\sigma^*$ -mediated photodissociation reactions. *Int. Rev. Phys. Chem.* **2015**, 34 (3), 429–459.

(14) Woo, K. C.; Kang, D. H.; Kim, S. K. Real-Time Observation of Nonadiabatic Bifurcation Dynamics at a Conical Intersection. *J. Am. Chem. Soc.* **2017**, *139* (47), 17152–17158.

(15) Han, S.; Lim, J. S.; Yoon, J.-H.; Lee, J.; Kim, S.-Y.; Kim, S. K. Conical intersection seam and bound resonances embedded in continuum observed in the photodissociation of thioanisole- d_3 . *J. Chem. Phys.* **2014**, *140*, 054307.

(16) Lee, J.; Kim, S.-Y.; Kim, S. K. Spectroscopic Separation of the Methyl Internal-Rotational Isomers of Thioanisole Isotopomers (C_6H_5S -CH₂D and C_6H_5S -CHD₂). *J. Phys. Chem. A* **2014**, *118* (10), 1850–1857.

(17) Kim, S.-Y.; Lee, J.; Kim, S. K. Conformer specific nonadiabatic reaction dynamics in the photodissociation of partially deuterated thioanisoles ($C_6H_5S-CH_2D$ and $C_6H_5S-CHD_2$). *Phys. Chem. Chem. Phys.* **2017**, *19* (29), 18902–18912.

(18) Lim, J. S.; You, H. S.; Kim, S.-Y.; Kim, S. K. Experimental observation of nonadiabatic bifurcation dynamics at resonances in the continuum. *Chem. Sci.* **2019**, *10* (8), 2404–2412.

(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazvev, O.; Austin, A. I.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision A.1; Gaussian, Inc.: Wallingford, CT, 2009.

(20) Turbomole, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, V7.0.2; Turbomole GmbH, 2015, http://www.turbomole.com.

(21) You, H. S.; Kim, J.; Han, S.; Ahn, D.-S.; Lim, J. S.; Kim, S. K. Spatial Isolation of Conformational Isomers of Hydroquinone and Its Water Cluster Using the Stark Deflector. *J. Phys. Chem. A* **2018**, *122* (5), 1194–1199.

(22) Chang, Y.-P.; Horke, D. A.; Trippel, S.; Küpper, J. Spatiallycontrolled complex molecules and their applications. *Int. Rev. Phys. Chem.* **2015**, 34 (4), 557–590.

(23) Chang, Y.-P.; Filsinger, F.; Sartakov, B. G.; Küpper, J. CMIstark: Python package for the Stark-effect calculation and symmetry classification of linear, symmetric and asymmetric top wavefunctions in dc electric fields. *Comput. Phys. Commun.* **2014**, *185* (1), 339–349.